2020到2022数学周报七年级第一期答案

2解:(1)由题意得x2+y2=(cosa+√3ina)2+(sina√3cosa)2化简得x2+y2=4即曲线C的普通方程为x2+y2=43分直线的极坐标方程展开为2∞0s0-2psn=2,故直线l的直角坐标方程为3x-y-4=0.(5分)(2)显然点P的坐标为(0,-4),不妨设过点P的直=Icos线的参数方程为(t为参数)4+tsin B代入x2+y2=4,得t2-8sin+12=0,△>0(8分设A,B两点对应的参数分别为1,t2,则|PA|·|PB|=|t1t2|=12,即|PA|·|PB|为定值(10分)
r=3+cos a22.解:(1)将曲线C的参数方程消去参1+sin g得(x-√3)2+(y-1)2=1.(2分)将x=pcos0及y=psin0代入上式得曲线C的极坐标方程为p2-23ncos0-2sin叶+(4分)(2)因为直线l与曲线C相交于不同的两点P1,P2设直线l方程为y=kx(k>0)则圆心C(3,1)到直线l的距离d小于半径1所以直线l倾斜角0 <由题意有∈(0将=代入曲线c的极坐标方程,得p2-2√3cossin 8+3设p1(mn,),p2(p,)则p+p="23cs+2sin0,pp=3.(6分)1+2" 3cos b+2sin b="t" sin(0+3(8分)因为∈(,否),所以仇十等∈(誓)则m(+号)∈(2]所以pt+o的取值范围为(284(10分)< p>由题意有∈(0将=代入曲线c的极坐标方程,得p2-2√3cossin>
以上就是2020到2022数学周报七年级第一期答案,更多英语周报答案请关注本网站。
