2022-2022数学周报七年级人教版第8期答案

21.解:(1)因为f(x)=ax(nx+a-1),所以∫(x)=a(mx+a-1+x,1)=a(lnx+当a<0时,由f(x)>0,得lnx+a<0,解得1
21.(本小邀满分12分)解:(1)当a=1时,f(x)=ax2-lxfx2-hx+=(x>0),8(x)=xf(x)=x2|2122,g(x)=6x2-1,令g(x)=6x2-1=0.得xr∈0.g'(x)<0,g(x)单调递减6当√6x∈6’+∞时,g(x)>0,g(x)单调递增(4(2)g(x)=x2f(x)=x2|2ax2=2ax-x-2ag(x)=6x2-1,令gt()=6ax2-1=0,得x=,6当r∈0,时,g(x)<0,g(x)单调逃减当x∈,、+∞时,gxy>0,(x单调速增V所以2a<0Y6a voa而g(0)=-2a<0,所以g(x)在0)上无零点,gxV6+∞|:存在唯的专点m,…(7分)所以当x∈(0m)时,g(<0“x∈(m+∞)时,g(x)>0,2a-x-2/' r)=2ar-ir∈(0.m)时,了(x)<0,f(x)单调递减,当x∈(m,+∞)时,f(x)>0,f(x)单调递增注意到)=3a>0,根期题意m为f(x)的唯一零点,即x=m,2ax-x-2a=022a。消去a,得2lnx。=0(10分)设F(x)=2lx-1-3可知F(x)在(1+∞)上单调递增,F(2)=2ln2-1-7=2×0.69-100.F(3)=2l3-29=2×109-29>0所以x∈(2,3,{x]=2…(12分
以上就是2022-2022数学周报七年级人教版第8期答案,更多英语周报答案请关注本网站。
